top of page
logo_white_hrtz_svg.png

​Welcome to GCER Lab

Geospatial Computing for Earth observation Research (GCER) Lab is housed in the Department of Agricultural and Biological Engineering at Mississippi State University. Our research group utilizes satellite observations, cutting-edge deep learning algorithms, and high-performance computing to advance geospatial data analysis for agriculture and water resource management.

globe_sky.jpg

Mission

​GCER lab's mission is to advance sustainable agriculture and water resources management by developing innovative AI-driven software that integrate satellite data, and high-performance computing. Our interdisciplinary research supports further insights on agricultural and environmental challenges from local to global scales.
 

1. Advance Earth Observation for agricultural and water resources monitoring

2. Develop AI-driven software for complex data classification

3. Support climate resilience and environmental protection

logo_white_compact.png
IMG_9911_edited.jpg

Satellite image processing is our core mission 

Advance image processing

Atmospheric correction

Virtual constellation

Synthetic data

cbers.jpg

Atmospheric correction

Continental-scale surface reflectance product from CBERS-4 MUX data: Assessment of atmospheric correction method using coincident Landsat observations. Martins, V. S., Soares, J. V., Novo, E. M., Barbosa, C. C., Pinto, C. T., Arcanjo, J. S., & Kaleita, A. (2018). ​​ ​

 

Read more!

Analysis Ready Data 

s3card2.jpg

Analysis Ready Data

Sentinel-3 Coastal Analysis Ready Data (S3CARD): An operational framework for coastal water applications

Caballero, C. B., Martins, V. S., Paulino, R. S., Lima, T. M., Butler, E., & Sparks, E. (2025).

Read more!

aquavis.jpg

Virtual constellation

AQUAVis: Landsat-Sentinel Virtual Constellation of Remote Sensing Reflectance (Rrs) Product for Coastal and Inland Waters.

Lima, T. M., Martins, V. S., Paulino, R. S., Caballero, C. B., Barbosa, C. C., & Ashapure, A. (2025).

Read more!

Sampling strategy

sampling2.jpg

Sampling strategy

Impact of sampling techniques on crop type mapping using multi-temporal composites from Harmonized Landsat-Sentinel images

Aires, U. R., Martins, V. S., Ferreira, L. B., Huang, Y., Heintzman, L., & Ouyang, Y. (2025).

Read more!

datafusion.jpg

Synthetic data generation

Generation of robust 10-m Sentinel-2/3 synthetic aquatic reflectance bands over inland waters.

Paulino, R. S., Martins, V. S., Novo, E. M., Barbosa, C. C., Maciel, D. A., Wanderley, R. L. D. N., ... & Lima, T. M. (2025).

Read more!

Satellite validation

pace.jpg

Satellite product validation

PACE (Plankton, Aerosol, Cloud, ocean Ecosystem): Preliminary analysis of the consistency of remote sensing reflectance product over aquatic systems. Paulino, R. S., Martins, V. S., Caballero, C. B., Lima, T. M., Liu, B., Ashapure, A., & Werdell, J. (2026).

Read more!

globe_nobg_edited.png

Applications

Land cover

landcover2.jpg

Land cover mapping

Exploring multiscale object-based convolutional neural network (multi-OCNN) for remote sensing image classification at high spatial resolution. Kaleita, A. L., Gelder, B. K., da Silveira, H. L., & Abe, C. A. (2020). ​

Read more!

Agriculture

fieldboundary.jpg

Agricultural mapping

FieldSeg: A scalable agricultural field extraction framework based on the Segment Anything Model and 10-m Sentinel-2 imagery. 

Ferreira, L. B., Martins, V. S., Aires, U. R., Wijewardane, N., Zhang, X., & Samiappan, S. (2025).

Read more!

Burned area

burned_area2.png

Burned area mapping

Deep learning high resolution burned area mapping by transfer learning from Landsat-8 to PlanetScope

Martins, V. S., Roy, D. P., Huang, H., Boschetti, L., Zhang, H. K., & Yan, L. (2022).

Read more!

Ag Conservation

conservation.png

Agricultural conservation

Digital mapping of structural conservation practices in the Midwest US croplands: Implementation and preliminary analysis

Martins, V. S., Kaleita, A. L., & Gelder, B. K. (2021).

Read more!

Aerosols

aod_brasil2.png

Aerosol optical depth

Validation of high‐resolution MAIAC aerosol product over South America.

Martins, V. S., Lyapustin, A., de Carvalho, L. A., Barbosa, C. C. F., & Novo, E. M. L. D. M. (2017). ​

Read more!

Algal bloom

coastal_algal.png

Coastal algal bloom mapping

The need for advancing algal bloom forecasting using remote sensing and modeling: Progress and future directions​. 

Caballero, C. B., Martins, V. S., Paulino, R. S., Butler, E., Sparks, E., Lima, T. M., & Novo, E. M. (2025).

Read more!

Water vapor

watervapor.png

Columnar water vapor

Global validation of columnar water vapor derived from EOS MODIS-MAIAC algorithm against the ground-based AERONET observations. Martins, V. S., Lyapustin, A., Wang, Y., Giles, D. M., Smirnov, A., Slutsker, I., & Korkin, S. (2019).

Read more!

Landsat Gallery

Source: NASA Landsat Image Gallery

Mississippi_State_Bulldogs_logo.svg.png

GCERlab is part of the Department of Agricultural and Biological Engineering at Mississippi State University

bottom_bar_moody.jpg
bottom of page